Миф о люфте и точности подшипников
Во время Второй Мировой войны на военном заводе в Шотландии малоизвестный человек по имени Стэнли Паркер разработал концепцию, которую мы знаем сегодня как метод минимизации производственных затрат. Он заметил, что, несмотря на то, что некоторые детали, производимые для торпед, были забракованы после проверки, они все еще отправлялись в производство.
При ближайшем рассмотрении он обнаружил, что виной всему измерение допусков. Традиционные допуски по координатам X-Y создавали квадратную зону допуска, которая исключала деталь, даже если она занимала точку в изогнутом круговом пространстве между углами квадрата. Затем он опубликовал свои выводы о том, как определить истинное положение, в книге под названием "Чертежи и размеры".
Внутренний зазор
В наши дни концепция Паркера помогает разрабатывать подшипники, в которых есть некоторый люфт, иначе известный как внутренний зазор или, более конкретно, радиальный и осевой люфт. Радиальный люфт – это зазор, перпендикулярный оси подшипника, а осевой люфт - это зазор, параллельный оси подшипника.
Этот люфт изначально присутствует в подшипнике, чтобы позволить ему выдерживать нагрузки в различных условиях, принимая во внимание такой фактор, как температурное расширение.
В частности, зазор может влиять на шум, вибрацию, тепловое напряжение, прогиб, распределение нагрузки и долговечность. Более высокий радиальный люфт желателен в ситуациях, когда есть вероятность того, что внутреннее кольцо или вал станут более горячими и расширятся во время использования по сравнению с наружным кольцом или корпусом. В этой ситуации люфт в подшипнике уменьшится. И наоборот, люфт увеличится, если наружное кольцо расширится больше, чем внутреннее.
Более высокий осевой люфт желателен в тех случаях, где существует несоосность между валом и корпусом, поскольку она может привести к быстрому выходу из строя подшипника с небольшим внутренним зазором. Больший зазор также может позволить подшипнику справляться с несколько более высокими нагрузками, поскольку он подразумевает более высокий угол контакта.
Посадки
Важно, чтобы инженеры нашли правильный баланс внутреннего зазора в подшипнике. Подшипник с недостаточным люфтом будет генерировать избыточное тепло и трение, что приведет к скольжению тел качения по дорожке качения и ускорит износ. Точно так же слишком большой зазор увеличит шум и вибрацию и снизит точность вращения.
Зазор можно контролировать с помощью различных посадок. Такой контроль представляет собой степень натяга или зазора между валом и внутренним кольцом и между наружным кольцом и корпусом.
Плотная посадка между внутренним кольцом и валом важна для удержания его на месте и предотвращения нежелательного проскальзывания, которое может генерировать тепло и вибрацию.
Однако посадка с натягом уменьшит зазор в подшипнике по мере расширения внутреннего кольца. Аналогично плотная посадка между корпусом и наружным кольцом в подшипнике с низким радиальным люфтом приведет к сжатию наружного кольца и еще большему уменьшению зазора. Это будет причиной возникновения отрицательного внутреннего зазора — фактически делая вал больше отверстия — что приведет к чрезмерному трению и раннему выходу из строя.
Цель состоит в том, чтобы у подшипника был нулевой рабочий люфт, когда он работает в нормальных условиях. Однако начальный радиальный люфт может вызвать проблемы с заносом или скольжением шариков, снижая жесткость и точность вращения. Этот начальный люфт может отсутствовать из-за предварительной нагрузки. Предварительная нагрузка создается с помощью шайб или пружин, которые прижимаются к внутреннему или наружному кольцу подшипника после его монтажа.
Инженеры также должны учитывать тот факт, что легче уменьшить зазор в подшипнике тонкого сечения, потому что кольца тоньше и легче деформируются. Округлость вала и корпуса также более важна для подшипников тонкого типа, поскольку некруглый вал деформирует тонкие кольца и увеличивает шум, вибрацию и крутящий момент.
Допуски
Непонимание роли радиального и осевого люфта привело многих к путанице в отношениях между люфтом и точностью, особенно точностью, которая является результатом лучших производственных допусков.
Некоторые думают, что высокоточный подшипник почти не должен иметь люфта и должен вращаться очень точно. Для них большой радиальный люфт создает впечатление низкого качества, даже если это высокоточный подшипник, специально разработанный с люфтом.
Тем не менее, это правда, что допуск улучшает точность. Вскоре после появления массового производства инженеры поняли, что нецелесообразно и неэкономично, если вообще возможно, производить два совершенно одинаковых продукта. Всегда будут незначительные различия между одной единицей и последующей.
Классы допуска для шарикоподшипников, известные как ISO (метрические) или ABEC (дюймовые), регулируют допустимое отклонение и охватывают измерения, включая размер внутреннего и наружного колец, а также округлость колец и дорожек качения. Чем выше класс и чем жестче допуск, тем более точным будет подшипник после его сборки.